Pointwise Estimates for Marginals of Convex Bodies

نویسنده

  • R. Eldan
چکیده

We prove a pointwise version of the multi-dimensional central limit theorem for convex bodies. Namely, let μ be an isotropic, log-concave probability measure on Rn. For a typical subspace E ⊂ Rn of dimension nc, consider the probability density of the projection of μ onto E. We show that the ratio between this probability density and the standard gaussian density in E is very close to 1 in large parts of E. Here c > 0 is a universal constant. This complements a recent result by the second named author, where the total-variation metric between the densities was considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Gaussian Marginals of Uniformly Convex Bodies

We show that many uniformly convex bodies have Gaussian marginals in most directions in a strong sense, which takes into account the tails of the distributions. These include uniformly convex bodies with power type 2, and power type p > 2 with some additional type condition. In particular, all unit-balls of subspaces of Lp for 1 < p < ∞ have Gaussian marginals in this strong sense. Using the we...

متن کامل

Monge-ampère Measures for Convex Bodies and Bernstein-markov Type Inequalities

We use geometric methods to calculate a formula for the complex Monge-Ampère measure (ddVK) n, for K Rn ⊂ Cn a convex body and VK its Siciak-Zaharjuta extremal function. Bedford and Taylor had computed this for symmetric convex bodies K. We apply this to show that two methods for deriving Bernstein-Markov type inequalities, i.e., pointwise estimates of gradients of polynomials, yield the same r...

متن کامل

Optimal Transportation with Capacity Constraints

The classical problem of optimal transportation can be formulated as a linear optimization problem on a convex domain: among all joint measures with fixed marginals find the optimal one, where optimality is measured against a cost function. Here we consider a natural but largely unexplored variant of this problem by imposing a pointwise constraint on the joint (absolutely continuous) measures: ...

متن کامل

On Volume Distribution in 2-convex Bodies

We consider convex sets whose modulus of convexity is uniformly quadratic. First, we observe several interesting relations between different positions of such “2-convex” bodies; in particular, the isotropic position is a finite volume-ratio position for these bodies. Second, we prove that high dimensional 2-convex bodies posses one-dimensional marginals that are approximately Gaussian. Third, w...

متن کامل

Gaussian Marginals of Probability Measures with Geometric Symmetries

Let K be a convex body in the Euclidean space Rn, n ≥ 2, equipped with its standard inner product 〈·, ·〉 and Euclidean norm | · |. Consider K as a probability space equipped with its uniform (normalized Lebesgue) measure μ. We are interested in k-dimensional marginals of μ, that is, the push-forward μ◦P−1 E of μ by the orthogonal projection PE onto a k-dimensional subspace E ⊂ Rn. The question ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008